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Suppression of energy fluctuations in the classical counterpart of quantum models
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We study the relation between the energy-level statistics of a quantal system and the integrability
of its classical counterpart, derived using coherent states. Energy levels of any given distribution
are reproduced using models based either on the harmonic oscillator or on an su(2) algebraic model.
The energy-level fluctuations seen in the quantum models are greatly suppressed in their classical

counterparts.

This is opposite to what is usually seen, namely, the quantum system suppresses

sensitivity on the initial conditions of its classical chaotic counterpart.

PACS number(s): 05.40.+j, 03.65.Ge

The subject of “quantum chaos” has been studied in-
tensively in recent years, although there is still no com-
monly accepted definition of it. The main difficulty lies
in the fact that the most evident characteristic of classi-
cal chaos, which is extreme sensitivity of the motion of a
system to its initial conditions, has no direct counterpart
in the quantum analog. Lacking such a direct connection
between classical chaos and the corresponding quantum
system, attention has been paid to finding quantum ob-
servables which correlate with the appearance of classical
chaos [1-6] or in the study of quantum nonintegrability
[7, 8] in which the focus is on the question of quantum-
classical correspondence. In the former direction, mainly
with many numerical experiments, quantum level statis-
tics were studied extensively and a strong correlation
was found between classical chaotic behavior and quan-
tum Gaussian-orthogonal-ensemble (GOE) level statis-
tics. Despite some counterexamples [9-11], many prac-
titioners in this field continue to refer to systems with
GOE statistics as chaotic quantum systems. The view
is that quantum-level statistics of a certain kind, possi-
bly but not necessarily GOE, are a signature of classical
chaos reflected in quantum systems [12].

In this article, we ask the opposite question: What is
the reflection in classical mechanics when the correspond-
ing quantum system obeys some given level statistics?
Since we are going to concentrate on quantum level fluc-
tuations, it is convenient to unfold any given spectrum
so that on average the density of states is unity. The first
task is to find a quantum system which will generate the
desired spectrum. Reference [11] used a one-dimensional
model with a local potential field. The resulting poten-
tial is such that on average it is a harmonic-oscillator
potential, but with many fine oscillations. While this
provided a counterexample to the use of GOE to define
quantum chaos, it suffers, like other examples, from being
a purely numerical result. When a model for 900 levels
is constructed, one can always ask,“What if I have 9000
levels?” To avoid this reproach, we will here provide an
analytical result.

The second task is to find the classical analog of the
quantum model. In this paper, we adopt the widely ac-
cepted coherent state approach. Two of the simplest
textbook examples of coherent states are those using (a)
the harmonic oscillator (field coherent state) and (b) the
su(2) algebraic model (atomic coherent state). By means
of these coherent states, the classical counterparts are
well defined. To our surprise, quantum level fluctuations
of any kind are greatly suppressed in our models. The
resulting classical model is always well behaved. Since
there are no levels defined in classical mechanics, what
we mean here is that the energy becomes a smooth func-
tion in phase space, much smoother than the quantal
energy. We wish to emphasize the analogy between this
phenomenon and the suppression of sensitivity to initial
conditions when one goes from a classical system to the
corresponding quantum system.

We begin our discussion by defining our quantum
model. Instead of trying to find a model with certain
spectral statistics, we “fit” our model to a given spectrum
with the level statistics one wants. For a set of N > 1
levels with any desired type of level-spacing statistics,
E,, n=0,..,N — 1, we find the local average density
ps(Ey), and then construct the unfolded spectrum with
local average density unity:

ent1—en = (Eny1—En)ps(En), en-1—eo=N-1
(1)

where ps(E,) is the smooth local average level density.
The value of ey can be fixed by requiring the global aver-
age of e, —n to be zero. Next, we define an interpolating
function f(u) such that

f(n) = en. (2)

Obviously, such an interpolating function f always exists,
but it is not unique. One way to construct a well-behaved
function f(u) is through a discrete Fourier transform ap-
plied to the data series e,, — n, which is oscillating about
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Zero:
N-1
.Fk = E (en—
n=0

Then the function f(u) is defined through the inverse
Fourier transformation

n)e?mkn/N -k —0,.,N—-1. (3)

1
f(’LL) =u-+ N{ ]:0 + 6N=even]:N/2 COS TTU

(N=1)/2
+2 ) Re[fke—z’fwk/N]}. (4)
k=1

This function satisfies Eq. (2) exactly, and it is infinitely
differentiable everywhere, because it is a finite sum. Since
the result only involves linear terms and trigonometric
functions, it can be always expanded as convergent Tay-
lor series. (Admittedly, this property will fail in the limit
N — oo where the Fourier transform can approximate a
discontinuous function.) Figure 1 plots f(u) for a 500-
level spectrum with GOE statistics. It should be under-
stood that, although we have given a particular way to
construct f(u), the details of this function are not im-
portant. What will affect the later development are only
the values at the integer values of u. The simplest form
of f(u) which reproduces the spectrum would be the La-
grange interpolating polynomial; however, the resulting
function displays much larger fluctuations than does the
spectrum itself. Originally, the function f(n) is only de-
fined at integer points up to NV, but this can be extended
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FIG. 1. Function f(u) derived from a set of 500 unfolded

energy levels whose level spacings obey GOE statistics. At
the integer values of u, f(u) yields exactly the same energy
values. Inset: upper and lower parts are magnified regions
u € (100,110) and u € (300,310). Solid dots represent the
given spectrum.
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to all integers. A natural way is to extend the fluctua-
tion f(n) — n to be a periodic function of period N, as
implicitly defined by the Fourier transform:

f(n) = f(k) — k+n wherek = nmod(NV). (5)

We now construct our first quantum model based on
the harmonic oscillator. Instead of taking the Hamilto-
nian to be H = N + 1/2, we set

H = f(N), (6)

where N is the number operator. This Hamiltonian has
the same set of eigenstates |n), n = 0, ..., as the usual har-
monic oscillator, but its energy-level spectrum is exactly
the given unfolded spectrum reproduced by the function
f(u). Without going through the details, we know that
the classical counterpart of the quantum model is one di-
mensional and thus integrable. Thus we have an exam-
ple whereby one can build a quantum system with any
desired level statistics whose classical counterpart is in-
tegrable. The GOE statistics, of course, is only a special
case.

We now derive the classical model explicitly. For the
harmonic oscillator, the coherent states are

o) = exp(— 3 a)Z (7)

n-‘O

The classical Hamiltonian is the @ representation of H:

(o~ a)

= (a|H|a) = exp(—a*a) Zf(n) (8)

In making this correspondence, the quantity a*« is just
half the sum of the squares of the coordinate and its
conjugate momentum. We will call this u:
" 1

u=a a=—2-(p2+q2)- 9)
Since o*« is the classical analog of the operator ata, uis
the classical analogue of N. In other words, u here has a
similar meaning as the argument of the function f used
to define the quantum Hamiltonian. In terms of u,

H= 2 +a) + 3 pa@lf(n) -7, (10)
n=0

where p,(u) = e *u™/n! is just the Poisson distribution
for a variable n with average value u, Y oo npn(u) = u.
f(n) — n is the deviation of the given spectrum from a
straight line, that is, the fluctuation of the spectrum.
On average, it is zero. Note that this result depends only
on f(u) evaluated at integer values of uw and is there-
fore independent of the particular interpolation proce-
dure leading to Eqgs. (3) and (4) above. Compared to H,
‘H now consists of two parts, u = (p? + ¢?)/2, the usual
harmonic-oscillator Hamiltonian, plus a small fluctuation
term. The effect of summation over n is to make a local
average of f(n) —n around n = u with weight function
pn(u). Because pp(u) is smooth in n and [f(n) — n] os-
cillates rapidly around zero, much of the fluctuation is
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washed out, and the resulting fluctuation in the classical
Hamiltonian is much smaller than that in the quantum
model. In Fig. 2, which compares the function f(u) —u
to the Y0 o pn(u)[f(n) —n|, one can see clearly the filter
effect resulting from p,(u). As a quantitative measure,
we calculated the root-mean-square fluctuation shown in
Fig. 2, which for the quantum system is 0.46, while for
the classical it is 0.05, nearly a factor of 10 smaller. In
short, we have found the energy to be a function only
of the quantity u, which takes integer values in quantum
mechanics and varies continuously in the classical case.
The classical energy is a much smoother function of u
than is the corresponding quantum-mechanical energy, as
illustrated in Fig. 2. Because of this dramatic suppres-
sion of the fluctuations, the classical model is much more
“harmonic” than the corresponding quantum model.

It should be pointed out that this procedure to deduce
the classical Hamiltonian is not reversible, i.e., quantizing
H in the usual way ([q,p] = th) does not always return
to H [13]. However, this is not a disturbing fact; it is our
philosophy that quantum mechanics should be treated as
the fundamental theory from which classical mechanics
should be derived, and not vice versa. This point of view
is shared by an increasing number of people, as expressed
recently by Kleppner [14]. It is also worth mentioning
that the quantum Hamiltonian H is nonlocal in that it
implies a momentum dependence of the potential func-
tion. By using only a local potential in H = p?/2 + V (x)
one would not be able to have any degenerate levels, and
thus a spectrum with Poisson-type level-spacing statis-
tics could not be realized. The nonlocality of the current
approach makes it possible to realize spectra of arbitrary
statistics. The fact that in the present approach, an inte-
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FIG. 2. Fluctuations of quantum and classical Hamiltoni-
ans. Light line: f(u)—u represents the quantum fluctuations;
heavy line: >_>° pn(u)[f(n) — n], the fluctuation remaining
in the classical Hamiltonian.
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grable one-dimensional system can be forced to possess a
chaotic spectrum suggests that the spectrum alone may
not be sufficient to determine whether a quantum system
is chaotic or integrable.

Similarly, the model of a fixed spin squared can also
serve our purpose. We follow the same procedure to de-
fine the function f(u). Consider a fixed spin value

N-1
—. (11)

The quantum Hamiltonian is now defined as

H=f(J,+J), J.=-J,—J+1,...,+J, (12)

J =

which reproduces the desired spectrum. The classical
counterpart, which will be reached when J — o0, is also
one dimensional, and thus integrable.

Following the usual procedure, the su(2) coherent state
is defined as [13]

|€) = exp(§J4 — £"J-)[ - J)

J J
-
- (1 +'r*7') Z % Cé]fMTMlM)’ (13)
M=-J

where
g=Te (14)
T =tanfe " (15)

with 6, ¢ being spherical coordinates on a sphere in S2
and CJ M are the binomial coefficients, the number of
ways to select J + M objects from 2J. A semiquantal
Hamiltonian is then defined as [8]

= (£|H|¢)

(TT

-2 3 et o

with a conjugate coordinate and momentum pair g, p de-
fined by

1 ; 6
E(q +ip) = V2Je " sin 5 (17)

Setting u = (p? + ¢?)/2, one finds
u
2J —u

T =

(18)

and

S0+ )+3°8, (24, 55) () = n), (19)

n=0

where

_—u_ _ n ( _ i 2J—n _'LL n

" (2‘7’ 2.1) =02 (1 2,]) (2,7) (20)
is the binomial distribution for a variable n with mean
value u. H consists of a major term Ho = (p? + ¢°)/2,
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plus a small term which reflects fluctuations. Since
0 < (p?+4¢?) < 4J [see Eq. (17)], Ho represents a confined
harmonic oscillator. The fluctuation term, for the same
reasons stated in the preceding section, is much smaller
than the quantum fluctuation term [f(u) — u]. We note
that the problem of extending f(u) outside the basic in-
terval does not arise here. In this case, the Poisson dis-
tribution has been replaced by the binomial distribution.
It is known that the classical limit for the su(2) model
is reached when J — oo. In that limit, it can be proven
that for any finite u, Bp[2J,u/(2J)] — pn(u). Thus

}LIIOIOH|su(2) = HIHO' (21)

In summary, we have used simple one-dimensional
models to demonstrate two points. First, that it is pos-
sible to construct a model having any specified quantum
spectral statistics for which the classical counterpart is
integrable. We would like to remark that, although we
have chosen the harmonic oscillator and the su(2) alge-
braic model to demonstrate our idea, other models with
higher dimension could also be used. Think of a model

with some dynamical symmetry; its spectrum can be la-
beled by group-chain representations. It is possible to
define the Hamiltonian as a function of group-chain sub-
group Casimir operators, so that the resulting spectrum
obeys a given statistics. If one accepts that models with
dynamical symmetry are integrable, then this shows that
they can have any type of level statistics. For a discus-
sion of how a change in dynamical symmetry affects level
statistics, see [15, 16].

The second point we have made is that spectral fluctu-
ations, which are thought to be closely related to quan-
tum chaos, can be greatly suppressed in the classical
counterpart. It is interesting to compare this with the
generic behavior that, when one goes from a classical
chaotic system to its quantum counterpart, the sensitiv-
ity to the initial conditions is suppressed.
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